
Extracting strong measurement noise from stochastic time series: Applications to empirical data

P. G. Lind,1,2 M. Haase,3 F. Böttcher,4 J. Peinke,4 D. Kleinhans,5,6 and R. Friedrich6

1Center for Theoretical and Computational Physics, University of Lisbon, Avenida Professor Gama Pinto 2, 1649-003 Lisbon, Portugal
2Departamento de Física, Faculdade de Ciências da Universidade de Lisboa, 1649-003 Lisboa, Portugal

3Institute for High Performance Computing, University of Stuttgart, Nobelstraße 19, D-70569 Stuttgart, Germany
4Institute of Physics, University of Oldenburg, D-26111 Oldenburg, Germany

5Institute for Marine Ecology, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
6Institute of Theoretical Physics, University of Münster, D-48149 Münster, Germany

�Received 15 December 2009; revised manuscript received 30 March 2010; published 21 April 2010�

It is a big challenge in the analysis of experimental data to disentangle the unavoidable measurement noise
from the intrinsic dynamical noise. Here we present a general operational method to extract measurement noise
from stochastic time series even in the case when the amplitudes of measurement noise and uncontaminated
signal are of the same order of magnitude. Our approach is based on a recently developed method for a
nonparametric reconstruction of Langevin processes. Minimizing a proper non-negative function, the proce-
dure is able to correctly extract strong measurement noise and to estimate drift and diffusion coefficients in the
Langevin equation describing the evolution of the original uncorrupted signal. As input, the algorithm uses
only the two first conditional moments extracted directly from the stochastic series and is therefore suitable for
a broad panoply of different signals. To demonstrate the power of the method, we apply the algorithm to
synthetic as well as climatological measurement data, namely, the daily North Atlantic Oscillation index,
shedding light on the discussion of the nature of its underlying physical processes.
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I. INTRODUCTION

Recently, much effort has been made to uncover the dy-
namical process underlying a given time series of scale and
time dependent complex systems �1–3�. In many cases it is
possible to describe such systems by a Langevin equation,
extracted directly from the data, which separates the deter-
ministic and stochastic processes inherent to the system �4�.
Such an approach has already been carried out successfully,
for instance, for data from turbulent fluid dynamics �5�, fi-
nancial data �6�, climate indices �7,8�, and for electroen-
cephalographic recordings from epilepsy patients �9,10� and
additional improvements were proposed to address the case
of low sampling rates �11,12�.

However, typically the signal is subject to noise due to
experimental constraints or due to the measurement or dis-
cretization procedure leading to the data set to be studied.
Such noise is not intrinsic to the system, differing from what
is known as dynamical noise, and therefore one is interested
to separate it from the stochastic process. We call such non-
intrinsic noise measurement noise. To separate the measure-
ment noise from the dynamics of the measured variable dif-
ferent predictor models or schemes for noise reduction may
be used �1,3�. In this context, an alternative procedure has
been proposed �13� to extract the intrinsic dynamics associ-
ated with Langevin processes strongly contaminated by mea-
surement noise based solely on the two conditional moments
directly calculated from the data �12,13�.

In this paper we will revisit this nonparametric procedure,
describing it in detail and explaining the main steps for its
implementation, with the aim of applying it to empirical data
sets. Let us consider a one-dimensional Langevin process
x�t� �an extension to more dimensions is straightforward�
defined as

dx

dt
= D1�x� + �D2�x��t, �1�

where �t represents a Gaussian �-correlated white noise
��t�=0 and ��t�t��=��t− t��. Functions D1�x� and D2�x� are
the drift and diffusion coefficients defined as

Dn�x� =
1

n!
lim
�→0

1

�
Mn�x,�� �2�

for n=1,2, where Mn�x ,�� denotes the nth order conditional
moment of the data, as explained below. Further, we consider
that x�t� is “contaminated” by a Gaussian �-correlated mea-
surement white noise, which leads to the series of observa-
tions

y�t� = x�t� + ���t� , �3�

where � denotes the amplitude of the measurement noise.
When there is no measurement noise ��=0�, Eq. �3�

yields the particular case y�t��x�t�, and the evolution equa-
tion underlying the signal can be extracted directly from the
two conditional moments �n=1,2�

M̂n�yi,�� = ��y�t + �� − y�t��n�	y�t�=yi
�4�

as described in Refs. �4,6,8,13�.
In the presence of measurement noise ���0� the condi-

tional moments depend on x, �, and �. Since generally the
limit

lim
�→0

M̂n�x,� � 0,�� �5�

does not exist, Eq. �3� cannot be applied. The aim of this
paper, however, is to explicitly derive a procedure which can
transform the functional form of the “noisy conditional mo-
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ments” M̂1�x ,� ,�� and M̂2�x ,� ,�� at small � into the “true”
coefficients D1�x� and D2�x� and simultaneously retrieve the
amplitude � of the associated measurement noise. For that,

we show that M̂n�y ,�� for fixed y is typically linear in � for
a certain range ��1 ,�2� of values �see Fig. 4 below�. There-
fore, even when ��0 one can estimate the quantities

Dn�y� =
M̂n�y,�2� − M̂n�y,�1�

n!��2 − �1�
. �6�

We start in Sec. II by briefly describing the procedure to
extract Langevin equations from data sets and show how the
drift and diffusion coefficients depend on the measurement
noise strength �. In particular, we will see that the proposed
estimate �14� does not yield the correct value when the mea-
surement noise is too strong. In Sec. III we then proceed to
minimize a proper least square function using the Levenberg-
Marquardt procedure �15�. By applying this algorithm to
synthetic data we show that indeed this approach is able to
reliably extract the noise amplitude even in cases where it is
of the same order as the synthetic signal without noise. Fur-
thermore, the procedure yields simultaneously more accurate
estimates for the clean signal x�t�. Finally, in Sec. IV, we
apply this framework to an empirical data set, namely, the
North Atlantic Oscillation �NAO� daily index �16�, giving
some insight from the obtained results to the underlying sys-
tem. Discussion and conclusions are given in Sec. V, where
further possible applications are proposed. All details con-
cerning the implementation of the minimization procedure to
extract strong measurement noise are given as Appendixes A
and C.

II. STOCHASTIC TIME SERIES WITH STRONG
MEASUREMENT NOISE

We consider a time series generated by integrating Eq. �1�
with drift and diffusion coefficient assumed to be linear and
quadratic forms, respectively,

D1�x� = d10 + d11x , �7a�

D2�x� = d20 + d21x + d22x
2, �7b�

and by adding separately to each data point the measurement
noise term ���t� in Eq. �3�. Though we concentrate on the
particular expressions for D1 and D2 given above, it should
be stressed that they comprehend a large collection of differ-
ent processes, such as Ornstein-Uhlenbeck processes �13�.
Further, some generalizations may be carried out as will be
discussed in Sec. V. Using Eqs. �7a� and �7b�, one has six
parameters: five coefficients dij defining the evolution equa-
tion of the clean signal and a sixth parameter � for the am-
plitude of the measurement noise.

Figure 1 illustrates this influence of noise for a particular
choice of D1�x�, D2�x�. As shown in Fig. 1�a�, for increasing
� one obtains broader probability density functions P�y� as
one intuitively expects. Quantitatively, the standard deviation
� of P�y� varies quadratically with the measurement noise �,
while the mean value � of P�y� remains constant, as shown

in the inset of Fig. 1�a�. The estimated functions D̂1�y� and

D̂2�y� change significantly, as shown in Figs. 1�b� and 1�c�,
respectively. Assuming D̂1�y�= d̂10+ d̂11y and D̂2�y�= d̂20

+ d̂21y+ d̂22y2, Fig. 2 shows how the estimated parameters d̂ij
deviate from the true uncontaminated values dij in Eq. �7�
when measurement noise increases. Notice that for
�=0—see left vertical axis in the plots of Fig. 2—the esti-
mated parameter values are approximately correct.

To correctly derive the drift and diffusion coefficients
D1�x� and D2�x� when � is strong, we consider the measured

conditional moments M̂1�yi ,�� and M̂2�yi ,��, as in Eq. �4�,
the hat indicating that they are calculated from the measured
data y�t� directly. Since this conditional moments depend in a

-4 -2 0 2 4 6
y

0

0.02

0.04

0.06

0.08

0.1

P(y)
σ=0
σ=0.3
σ=0.9
σ=1.5
σ=2.1

-4 -2 0 2 4 6
y

-6

-4

-2

0

2

4

6

8

D
1

-4 -2 0 2 4 6
y

0

10

20

30

40

D
2

0 0.5 1 1.5 2
σ

1

2

3(a)

(b) (c)

µ
θ

^ ^

FIG. 1. Langevin time series with different measurement noise
strengths. Here we show �a� the probability density function P�y� of
the series with noise �see Eq. �3��, with the corresponding mean
value � and standard deviation � in the inset, and the corresponding

functions �b� D̂1�y� and �c� D̂2�y�, see Eq. �6�. In all cases, the
assumed time series x�t� without measurement noise uses the func-
tions D1�x�=1−x and D2�x�=1−x+x2.
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FIG. 2. Noise dependence of coefficients d̂ij defining functions

D̂1�y� and D̂2�y� �see text and Eq. �6��. The underlying Langevin
time series x�t� without noise is the same as in Fig. 1.
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nontrivial way on both time � and amplitude yi, we approxi-
mate them up to first order on �:

M̂1�yi,�� = �y�t + �� − y�t��	y�t�=yi

= �m̂1�yi� + �̂1�yi� + O��2� , �8a�

M̂2�yi,�� = ��y�t + �� − y�t��2�	y�t�=yi

= �m̂2�yi� + �̂2�yi� + �2 + O��2� , �8b�

where y�t� is taken in the range yi	
y /2 for each bin i, and

y depends on the binning considered. Appendix A gives the
full derivation of Eqs. �8�.

Figure 3 shows both conditional moments for �=0 and
with different measurement noise strengths. Conversely, in
Figs. 4�a� and 4�b� one sees that the conditional moments
depend linearly on � for a fixed amplitude y, which justifies
the approximation assumed in Eqs. �8�. Therefore, to study
the dependence of the conditional moments on y we will
consider the linear decompositions in Eqs. �8�, as done in
Fig. 5. Our simulations with synthetic data have shown that
using a too large range of � values yields results for D1 and
D2 deviated from their true values. The best estimation for
both D1 and D2 are obtained using the range 1���4.

Notice that for sufficiently small measurement noise a
good estimate of it is given by �13,14�

� 
�M̂2��,0�
2

, �9�

where � is the average value of y�t� data points in the time
series. For details see Appendix A. However, as shown
in Fig. 4�c�, this approximation is no longer valid for suffi-
ciently high measurement noise, namely, when �
0.5 �see
inset of Fig. 4�c�� and even otherwise coefficients D1 and D2
are not correctly estimated �see Fig. 2�. Therefore, a better
algorithm to estimate such parameters is necessary.

The heart of our procedure to correctly estimate measure-
ment noise lies in the fact that while the functions m̂i and �̂i
�i=1,2� are obtained explicitly for each bin value yi, func-
tions mi and �i depend generally on the drift and diffusion
coefficients as follows:

�1�y� = �
−�

+�

�x − y� f̄��x	y�dx , �10a�

�2�y� = �
−�

+�

�x − y�2 f̄��x	y�dx , �10b�

m1�y� = �
−�

+�

D1�x� f̄��x	y�dx , �10c�

m2�y� = 2�
−�

+�

��x − y�D1�x� + D2�x�� f̄��x	y�dx , �10d�

where f̄��x 	y� is the probability for the system to adopt the
value x when a measured value y is observed. For details
about the derivation of functions in Eqs. �10� see Appendix

A and for the explicit expression of f̄��x 	y� see Appendix B.
In Fig. 5 we illustrate both the hat-functions in Eqs. �8�

and their integral form in Eqs. �10�. Due to the measurement
noise fixed in this example at �=1 the hat functions �sym-
bols� are not properly fitted by the integral form in Eqs. �10�
using the first estimate �dashed lines� of the parameters dij,
taken from Fig. 2, and �, computed from Eq. �9�. If instead
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The asymmetry of M̂2 is due to d21�0 �see Eqs. �7��. The same x�t�
as in Fig. 1 was used.
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gible. The same x�t� as in Fig. 1 was used.
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we use the true parameter values in the integral forms of our
mi and �i functions a proper fit is obtained �solid lines�.

Therefore, the problem we want to solve is to determine
the parameters that minimize the function:

F =
1

M


i=1

M ���̂1 − �1�yi��2

��̂1

2 �yi�
+

��̂2 − �2�yi� − �2�2

��̂2

2 �yi�

+
�m̂1 − m1�yi��2

�m̂1

2 �yi�
+

�m̂2 − m2�yi��2

�m̂2

2 �yi� � , �11�

where the summation extends over all M bins, ��̂1
�yi� is the

error associated to function �̂1 at the value yi and similarly
for ��̂2

, �m̂1
, and �m̂2

. Notice that the values of such ��̂i
and

�m̂i
are taken directly from the data only. See Appendix A for

details.
Taking again the example illustrated in Fig. 2 with �=1

we plot in Fig. 6 function F in Eq. �11� as function of each
one of the parameters keeping all others fixed at their true
values. Evidently, the estimated values are near the minimum
of F in each case. Further, the one-dimensional cuts of func-
tion F show only one minimum. One should note however
that, for the entire six-dimensional parameter space, several
local minima of F may appear. In fact, after minimizing F by
varying one parameter, function F also changes as a function
of the other parameters, i.e., its minimum as a function of the
other parameter changes. In the next section we will see how
to minimize function F, in order to find good estimates for
the correct values for each parameter.

III. OPTIMIZATION PROCEDURE

After computing the functions �̂1, �̂2, m̂1, and m̂2 as well
as the corresponding errors ��̂1

, etc., directly from the mea-
sured time series y�t� and estimating the coefficients D1 and

D2 given by the functional forms in Eqs. �7� there are several
ways to minimize F. All of them start from the initially es-
timated set of values for the parameters and iteratively im-
prove the solution by finding lower values of F until conver-
gence is attained.

To proceed the following remark should be considered.
Parameter d10 can always be eliminated with a simple trans-
formation x→x�=x+d10 /d11. Alternatively and since we
do not know beforehand the true values of d10 and d11,
we can consider also the fact that averaging Eq. �1� yields
d10=−d11�x� and consider the transformation x�=x− �x�. With
these arguments, we henceforth disregard d10, which reduces
the dimension of parameter space by one. Parameter d10 is
computed from the relations above, only after minimizing F.
For simplicity the primes in x� will be omitted.

The simplest way is to minimize each term in F and re-
peat that a large number of times starting from different ini-
tial conditions for the parameters, in a sort of Monte Carlo
procedure of random walks �17� or Lévy walks �18�. The
Monte Carlo procedure assures that a substantial number of
local minimal for F will be visited, and in the end, we take
the minimum of all F values found. Simulations have shown
however that a Monte Carlo procedure is too expensive in
this case since there are different local minima and the
choice of the minimum is strongly path dependent. We will
therefore consider the Levenberg-Marquardt method �15�.

For the Levenberg-Marquardt procedure one computes
the first and second derivative of F. Symbolizing the param-
eters �, d11, d20, d21, and d22 by pk with k=1, . . . ,5, respec-
tively, these derivatives read as
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�F

�pk
= −

2

M


i=1

M � �̂1 − �1

��̂1

2 �i�
��1

�pk
+

�̂2 − �2 − �2

��̂2

2 �i�
���2 + �2�

�pk
+

m̂1 − m1

�m̂1

2 �i�
�m1

�pk
+

m̂2 − m2

�m̂2

2 �i�
�m2

�pk
� , �12�

�2F

�pk � p�

=
2

M


i=1

M � 1

��̂1

2 �i�
��1

�pk

��1

�p�

−
�̂1 − �1

��̂1

2 �i�
�2�1

�pk � p�

+
1

��̂2

2 �i�
���2 + �2�

�pk

���2 + �2�
�p�

−
�̂2 − �2 − �2

��̂2

2 �i�
�2��2 + �2�

�pk � p�

+
1

�m̂1

2 �i�
�m1

�pk

�m1

�p�

−
m̂1 − m1

�m̂1

2 �i�
�2m1

�pk � p�

+
1

�m̂2

2 �i�
�m2

�pk

�m2

�p�

−
m̂2 − m2

�m̂2

2 �i�
�2m2

�pk � p�
�

�
2

M


i=1

M � 1

��̂1

2 �i�
��1

�pk

��1

�p�

+
1

��̂2

2 �i�
���2 + �2�

�pk

���2 + �2�
�p�

+
1

�m̂1

2 �i�
�m1

�pk

�m1

�p�

+
1

�m̂2

2 �i�
�m2

�pk

�m2

�p�

− 2��pk
��p�

�̂2 − �2 − �2

��̂2

2 �i� � .

�13�

In the right-hand side of Eq. �13� we neglect the terms con-
taining second derivatives of � and m functions. This last
approximation of neglecting second derivatives is acceptable
as far as the model is successful �15�.

By symbolizing first and second derivatives as �k and �k�,
respectively, the iterative procedure computes the increments
dpk for each parameter pk �k=1, . . . ,5�, which are the solu-
tions of

�k = − 

�=1

5

�k�dp�. �14�

Furthermore, one assumes that dp����, which considering
dimensional analysis �15� can be written as

dp� =
��

����

, �15�

where typically ��1. For a given � value, instead of the
second derivatives �mn one assumes �mn� =�mn�1+�� for m
=n and �mn� =�mn otherwise and solves Eq. �14� for dpk �15�.

If F�pk+dpk��F�pk�, the parameter values are updated,
pk→pk+dpk, and � is typically decreased by 10%. Other-
wise, if F�pk+dpk��F�pk� one increases � by 10% and de-
termines new increments dpk. The procedure stops after at-
taining the required convergence.

Using the same data as generated in Fig. 5 with �=1, we
now plot in Fig. 7 the functions m̂i and �̂i for the data �sym-
bols� and compare them with the integral forms of those
functions for the first estimate of parameter values �dashed
lines� and the optimized solution obtained with the
Levenberg-Marquardt procedure �solid lines�. Clearly, the
optimized functions fit better the data and the minimum of F
found is very close to its true value �see caption of Fig. 7�.

Notice that the optimized values dik� are obtained for
the transformed data �x→x�=x− �x��, assuming d10� =0. In
practice one obtains d10� �10−2, typically two orders of
magnitude smaller than the other coefficients. Using �x�
=−d10 /d11, one obtains the true coefficients according
to d10=−d11� �x�, d11=d11� , d20=d20� −d21� �x�+d22� �x�2, d21=d21�

−2d22� �x�, and d22=d22� .

To show the power of the present procedure we next gen-
erate several synthetic data sets from Eq. �1� with different
measurement noise amplitudes �I in the range �0,1.2�. The
same D1�x� and D2�x� as in Fig. 2 is used. Results are shown
in Fig. 8. The circles indicate the obtained parameter values
for the first estimate, as in Fig. 2. The solid lines indicate the
true values used to generate the data, while bullets indicate
the value after optimization.

From Fig. 8�a� one sees that after optimization the value
of �I is always correctly determined. Such finding is of ma-
jor importance and shows the relevance of our approach for
practical applications even for strong measurement noise
since the uncontaminated series x typically lies within the
range �−2,2�, having therefore values close to the amplitude
�I of the measurement noise.

Figures 8�b� and 8�c� also show a very reliable estimate
for the two parameters d10 and d11, respectively, defining the
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FIG. 7. Functions m1, m2, �1, and �2 for the Langevin process
with D1�x�=1−x, D2�x�=1−x+x2, and �=1. Symbols indicate the
functions obtained for the data, dashed line corresponds to the first
estimate of the parameters and solid line corresponds to the param-
eter values obtained from the Levenberg-Marquardt procedure �see
text�. In this case, for the first estimate one has F0=3720 while the
final estimate retrieves FLM =33.1. The true minimum is Fm=29.2.
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drift coefficient D1�x�. Since this coefficient characterizes the
deterministic part of the evolution equation for x, this accu-
rate estimate should provide valuable insight into the dynam-
ics of the underlying system.

As for the diffusion coefficient D2�x�, Figs. 8�d�–8�f�
show that the estimate of d22 is no longer as good as
for the other parameters. Parameter d20 is reasonably esti-
mated but the optimized estimate is as good as the first one.

For stronger measurement noise, namely, for ��1.2, one
faces the problem that the optimization procedure is some-
times stuck in a local minimum of the function F leading to
unreliable coefficients dik. This is in principle a shortcoming
of the presently used minimization algorithm. In addition,
the function F itself is based on estimated functions m and �
and therefore itself subject to errors. A forthcoming study
will address the observed issues in the context of global op-
timization.

IV. NORTH ATLANTIC OSCILLATION:
AN EMPIRICAL EXAMPLE

The NAO is a source of variability in the global atmo-
sphere, describing a large-scale vacillation in atmospheric
mass between the anticyclone near the Azores and the cy-
clone near Iceland �19�. The state of the NAO is usually
measured by an index N defined as the normalized pressure
difference between the high and the low poles, where the
pressures are averaged over each, day, month, or year �8,19�.
The NAO index and climate indices in general are receiving

much attention due to their important role in climate change.
Lately, evidences for the stochasticity of this index have been
shown �7,8�. In this section we address the problem of esti-
mating its measurement noise amplitude. In this section we
apply our framework to the North Atlantic Oscillation daily
index �Fig. 9�, which presents data with strong measurement
noise.

Figures 10�a� and 10�b� show the drift and diffusion
coefficients, respectively, for the NAO daily index �bullets�
and the corresponding fit �solid line�. Table I summarizes
the optimized values of dij for both D1 and D2 together with
the amplitude of the measurement noise � �column “NAO
index”�.

To evaluate the reliability of considering the NAO index
to be a Markov process described by Eq. �1� we also plot in
Fig. 10 the results obtained when integrating such equation
�circles� using the coefficient values in Table I including the
amplitude of the measurement noise. The corresponding fit is
represented with a dashed line and the parameter values are
indicated in Table I for comparison �first column in “with
measurement noise”�. The values for each parameter are av-
eraged over ten data sets, and the error is taken as the largest
deviation from the average. Sample size and time increment
are the same as for the empirical data.

As one sees from Table I, the very high level of measure-
ment noise � as well as the �-independent parts �1 and �2
�see Eq. �8�� plotted in Figs. 10�e� and 10�f� are well repre-
sented, while the coefficient values d11 and d20 in our simu-
lation deviate by a factor of two from the ones found for the
NAO series. These deviations result in large scattering of the
functions mi and Di, plotted in Figs. 10�a�–10�d� and are
attributed to the extremely high � value, at least three orders
of magnitude larger than the dij parameters.

Moreover, the deviations appear also because of the small
amount of data points �16 801 values� and of the too large
time increment dt. To address the question concerning the
size of the available series, we compare the results for sets
with 104 points and time increments between successive
measures dt=1 �same as for NAO series� with sets with

0

1

2

3

2σ2
True
1st estimate
Optimized

0

0.5

1

1.5

d
10

-1.5

-1

-0.5

0

d
11

0
0.2
0.4
0.6
0.8
1
1.2

d
20

0 0.2 0.4 0.6 0.8 1σ
I

-1

-0.5

0

d
21

0 0.2 0.4 0.6 0.8 1 1.2σ
I

0

0.2

0.4

0.6

0.8

1

d
22

(a) (b)

(c)

(d)

(e)

(f)
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and �f� d22. The measurement noise is correctly extracted as well as
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the deterministic part of the underlying evolution equation �see
text�.
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different number N of points and intertime dt, remaining the
time window N dt constant, and also with sets where only dt
is varied. Comparing these three different cases we see that
for small dt with fixed N dt the algorithm retrieves slightly
better parameter values. See the three columns “with mea-
surement noise.” For all coefficients, the estimate is better in
the case one uses the same time window N dt but with a
smaller time increment.

The mismatch between the empirical and synthetic series
could raise the question if the NAO index is indeed suitably
described by a Markovian stochastic process with a perceiv-
able deterministic part. In fact, since one observes ��dij the
series is approximately a pure white noise �i.e., y�t�=���t� in
Eq. �3��, which in fact also yields a linear drift and quadratic
diffusion coefficients.

To address this problem we rerun our optimization proce-
dure for synthetic data, for two additional situations: one
where �=0 and drift and diffusion coefficients are given by
the NAO index and another one which simulates a pure
white noise �D1=D2=0� with � equal to the value found for
the NAO series. The results are also given in Table I, col-
umns “no measurement noise” and “only measurement
noise,” respectively.

For the pure white-noise process one obtains � as the only
nonzero parameter, apart from fluctuations. For dt=1, the
white-noise amplitude is correctly estimated, while for the
cases with smaller dt=0.1 only the first estimate is available,
since the condition for optimizing iteratively the parameter
values, namely, d21

2 −4d20d22�0, is eventually violated due
to the numerically vanishing dij coefficients. These features
raise difficulties in a proper minimum search for F and there-
fore most of the simulation trials stop at the first estimate of
� and dij �see last columns of Table I�.

For the synthetic process with no noise, the order of
magnitude for the parameters of D1 and D2 is correctly
computed, whereas a nonzero measurement noise is re-
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FIG. 10. ��a� and �b�� Estimate of the drift and diffusion
coefficients D1�N� and D2�N� of the daily North Atlantic index N
�16� �16 801 data points�, together with the corresponding �c�
m1�N�, �d� m2�N�, �e� �1�N�, and �f� �2�N�. Results for the empiri-
cal NAO index are represented with bullets whereas the synthetic
data also with 16 801 data points and parameter values given by
Table I is shown with circles for comparison. The corresponding fits
of D1 and D2 and the analytical functions mi and �i with the best
parameter choices are given with solid and dashed lines,
respectively.

TABLE I. Optimized parameter values for the daily North Atlantic Oscillation index �16� compared with the average values for ten sets
of synthetic data �“with measurement noise”� using the same number of points and parameter values. In order to evaluate the reliability of
our synthetic data we also run the optimization procedure for ten sets of synthetic data with the same D1 and D2 found in NAO series and
�=0 �“no measurement noise”�. In the last columns we plot the results returned from the optimization procedure for synthetic data of pure
measurement noise with amplitude �=0.847, the one obtained for NAO series. In each case, we compare �i� results from sets of 104 points
and dt=1 with results from sets of 105 and dt=0.1, i.e., same time window and different time increments dt between successive measures
and �ii� results from sets of 105 and dt=0.1 with results from sets with 104 and dt=0.1, i.e., same time increment between measures and
different time window.

Parameter

NAO
index
16801

pts
dt=1

Simulations

With measurement noise No measurement noise Only measurement noise

104 pts 105 pts 104 pts 104 pts 105 pts 104 pts 104 pts 105 pts 104 pts

dt=1 dt=0.1 dt=0.1 dt=1 dt=0.1 dt=0.1 dt=1 dt=0.1 dt=0.1

��103 847 826	90 790	58 728	110 52	18 12	7 13	12 825	90 598	5 598	16

d10�103 −0.4 −0.3	0.1 −0.3	0.1 −1.1	0.6 −0.7	0.2 −0.62	0.07 −3.1	0.3 −0.3	0.1 0	10−3 0	0.01

d11�103 −6.91 −3	1 −3	1 −5	3 −6.0	0.4 −5.9	0.1 −13.5	0.2 −2	1 −0.1	1 2	2

d20�103 5.9 3	1 3	2 2	1 5.2	0.2 5.81	0.03 5.8	0.2 2.8	0.8 0.3	2 −0.5	3

d21�103 −0.02 0.3	0.7 −0.3	0.5 1	2 0.3	0.4 −0.1	0.1 1.7	0.3 0.3	0.6 −0.1	4 2	9

d22�103 1.2 2.1	0.7 0.9	0.7 4	5 1.4	0.2 1.29	0.03 2.2	0.3 2.2	0.7 0	2 1	4
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trieved, being significantly better estimated for the cases with
dt=0.1.

In this scope, our results point in the direction of previous
arguments given by some authors �20�: differently from other
climate indices such as the El Niño-Southern Oscillation
�ENSO� index, the NAO index seems to be an almost pure
white-noise process with only a minor contribution from a
stochastic process governed by a Langevin-like equation. Al-
ternative indices should be therefore considered and studied
as recently suggested �8�.

V. DISCUSSION AND CONCLUSIONS

We described in detail a nonparametric procedure to ex-
tract measurement noise in empirical stochastic series with
strong measurement noise. The algorithm is able to accu-
rately extract the strength of measurement noise and the
values of the parameters defining the drift coefficient and
to estimate with good accuracy the diffusion coefficient that
fully describe the evolution equation for the measured quan-
tity in the time series. This has been shown by synthetically
generated data sets contaminated by increasing measure-
ment noise. Additionally, the algorithm was applied to a set
of measured data providing insight in the underlying sys-
tems. The data for the climate index shows a large scattering,
probably due to the small amount of data points. Larger data
sets for climate indices are not available up to our knowl-
edge.

It should be noticed that the nonparametric reconstruction
of the Langevin Eq. �1� from measured stationary data sets
generally requires that the process exhibits Markovian prop-
erties and fulfils the Pawula theorem �8�. While the second
constraint can be relaxed extending the analysis to a broader
class of Langevin-like systems in which the Gaussian
�-correlated white-noise Langevin force is replaced by a
more general Lévy noise �2,21�, in general the Markov con-
dition remains a crucial constraint.

Recently, it has been shown that processes corrupted from
measurement noise may loose their Markov properties �22�.
For this reason the proper analysis of data suffering from
strong measurement noise in general is a complicated task.
We, however, would like to point out, that the method pre-
sented here solely relies on Markov properties of the under-
lying undisturbed process x�t�. In case of �-correlated mea-
surement noise the method presents a general approach to
access the process x and the noise amplitude � at the same
time.

Therefore, since the algorithm is general for a broad class
of stochastic systems other applications can be proposed.
Particularly in cases where the measurement procedure is
subject to large measurement noise due to the distance be-
tween the location where the measure is taken and the loca-
tion where the phenomena occurs. Two important applica-
tions in this context are seismographic data �2�, where the
epicenter cannot be predicted beforehand, and data from
surface electroencephalogram �EEG� �9,10�, which, though
having stronger measurement noise, are much recommended

instead of in situ measurements for the sake and comfort of
the patient. A further application would be the analysis of
sensors to which one has no access, for example, sensors
being installed in remote systems showing more and more
measurement noise due to aging effects. Here it should even
be possible to know quite precisely the functional structure
of the underlying process, an assumption of our analysis
here.

Such applications however appeal for the extension of the
present procedures to higher dimensions, i.e., more than one
time series, which implies the consideration of different mea-
surement noise sources and consequently noise mixing. To
ascertain in which conditions and up to which point can we
separate different measurement noise sources is an open
question which we will address elsewhere.

In all simulations a linear function was assumed for the
drift coefficient and a quadratic one for diffusion. Although
such assumptions comprehend already a broad class of sys-
tems �2,8,13� our approach and all expressions may easily be
extended to higher order polynomials for D1�x� and D2�x�, as
long as the number of parameters for modeling D1�x� and
D2�x� is not too high. In this case the calculations presented
in the appendices are valid if one considers proper higher
powers in the integrand of integrals h1 and h2 �see Eqs. �C12�
in Appendix C�.

Furthermore, other possibilities for optimization are pos-
sible. For instance, though in this case we have shown that
random Monte Carlo procedures are computationally expen-
sive consuming, one could think of a nonlocal search proce-
dure using, for example, bigger jumps such as the ones of a
Lévy flight process �23�. Alternatively one may also study
how good would be an optimization procedure that considers
the minimization of a split cost function F. Preliminary re-
sults have shown that for a proper decomposition of F our
optimization problem may be reduced to a cubic equation
and a lower dimensional system of linear equations. Another
possibility would be to use genetic algorithms �24�. These
points will be addressed elsewhere.
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APPENDIX A: THE CONDITIONAL MOMENTS
OF AN ARBITRARY TIME SERIES AND THEIR

LINEAR APPROXIMATIONS

Taking a series of measurements y�t� as defined in Eq. �3�,
its nth order conditional moment reads as
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M̂n�y0,�� = ��y�t + �� − y�t��n�	y�t�=y0

= �
−�

+�

dx0�
−�

+�

dx�
−�

+�

dy�y − y0�n

�f��y	x�f��x	x0� f̄��x0	y0� , �A1�

where f��y 	x� is the probability to measure y in the presence
of a measurement noise with variance �2, when the system
�without noise� has the value x, f��x 	x0� is the probability for
the system to evolve from a value x0 to a value x within a
time interval � and f̄��x0 	y0� has the inverse meaning of f�: it
is the probability for the system to adopt the value x0 when a
measured value y0 is observed. While f� is unknown, f� and

f̄� are related with each other according to Bayes’ theorem
�see Appendix B�.

From such assumptions one easily arrives to the identities

�
−�

+�

dyf��y	x� = 1, �A2a�

�
−�

+�

dy�y − x�f��y	x� = 0, �A2b�

�
−�

+�

dy�y − x�2f��y	x� = �2, �A2c�

and using these identities the general expression �A1� can be
approximated up to first order assuming ��1. More pre-

cisely, the first two moments M̂1 and M̂2 yield

M̂1�y0,�� = �y�t + �� − y�t��	y�t�=y0
= �

−�

+�

dx0�
−�

+�

dx�
−�

+�

dy�y − y0�f��y	x�f��x	x0� f̄��x0	y0� ,

= �
−�

+�

dx0�
−�

+�

dxf��x	x0� f̄��x0	y0��
−�

+�

dy�y − x + x − y0�f��y	x�

= �
−�

+�

dx0�
−�

+�

dxf��x	x0� f̄��x0	y0���
−�

+�

dy�x − y0�f��y	x� + �
−�

+�

dy�y − x�f��y	x��
= �

−�

+�

dx0�
−�

+�

dxf��x	x0� f̄��x0	y0���x − y0��
−�

+�

dyf��y	x� + 0�
= �

−�

+�

dx0 f̄��x0	y0��
−�

+�

dx�x − x0 + x0 − y0�f��x	x0�

= �
−�

+�

dx0 f̄��x0	y0���
−�

+�

dx�x0 − y0�f��x	x0� + �
−�

+�

dx�x − x0�f��x	x0��
= �

−�

+�

dx0 f̄��x0	y0���x0 − y0� + �D1�x0� + O��2��

= �
−�

+�

dx0�x0 − y0� f̄��x0	y0� + ��
−�

+�

dx0D1�x0� f̄��x0	y0� + O��2� � �̂1�y0� + �m̂1�y0� + O��2� , �A3�

M̂2�y0,�� = ��y�t + �� − y�t��2�	y�t�=y0
= �

−�

+�

dx0�
−�

+�

dx�
−�

+�

dy�y − y0�2f��y	x�f��x	x0� f̄��x0	y0� ,

= �
−�

+�

dx0�
−�

+�

dxf��x	x0� f̄��x0	y0��
−�

+�

dy�y − y0�2f��y	x�

= �
−�

+�

dx0�
−�

+�

dxf��x	x0� f̄��x0	y0��
−�

+�

dy�y − x + x − y0�2f��y	x�

= �
−�

+�

dx0�
−�

+�

dxf��x	x0� f̄��x0	y0�

���
−�

+�

dy�y − x�2f��y	x� + 2�x − y0��
−�

+�

dy�y − x�f��y	x� + �x − y0�2�
−�

+�

dyf��y	x��
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= �
−�

+�

dx0�
−�

+�

dxf��x	x0� f̄��x0	y0���2 + 0 + �x − y0�2�

= �
−�

+�

dx0 f̄��x0	y0��
−�

+�

dx��2 + �x − y0�2�f��x	x0�

= �
−�

+�

dx0 f̄��x0	y0��
−�

+�

dx��2 + �x − x0 + x0 − y0�2�f��x	x0�

= �
−�

+�

dx0 f̄��x0	y0���
−�

+�

dx�x − x0�2f��x	x0� + 2�x0 − y0��
−�

+�

dx�x − x0�f��x	x0���2 + �x0 − y0�2��
−�

+�

dxf��x	x0��
= �

−�

+�

dx0�2�D2�x0� + 2�x0 − y0��D1�x0� + �2 + �x0 − y0�2� f̄��x0	y0� + O��2�

= 2��
−�

+�

dx0�D2�x0� + �x0 − y0�D1�x0�� f̄��x0	y0� + �2 + �
−�

+�

dx0�x0 − y0�2 f̄��x0	y0� + O��2�

� �m̂2�y0� + �2 + �̂2�y0� + O��2� . �A4�

From Eq. �A4� one has M̂�y0 ,0�=�2+ �̂2�y0�, where

�̂2�y0�=�−�
+�dx0�x0−y0�2 f̄��x0 	y0�. Such observations justify

the first estimate for the measurement noise stated in Eq. �9�
since when � is small enough, probability density function

f̄��x0 	y0� is similar to f��y0 	x0� �see Eq. �A2a��, and there-
fore, one can take as a first approximation �̄2�y0���2.

Notice that the last equalities in M̂1 and M̂2 yield first-
order approximations under the assumption that ��1. In

Ref. �11� another approach is proposed for the estimation of
drift and diffusion coefficients in the case of low sampling
rates.

The errors for �̂1�y0�, �̂2�y0�, m̂1�y0�, and m̂2�y0� are

just given from the linear fit of M̂1 and M̂2 for each
fixed y0, given in Eqs. �8a� and �8b�. The errors of

M̂1�y ,�� and M̂2�y ,�� can also be directly computed from the
data as

�
M̂1

2 �y,�� = ���y�t + �� − y�t�� − �y�t + �� − y�t���2�t��t1,. . .,tn�

= ��y�t + �� − y�t��2 + M̂1
2�y0,�� − 2M̂1�y0,���y�t + �� − y�t���

=
1

Ny
�M̂2�y0,�� + M̂1

2�y0,�� − 2M̂1
2�y0,���

=
M̂2�y,�� − M̂1

2�y,��
Ny

, �A5a�

�
M̂2

2 �y,�� = ���y�t + �� − y�t��2 − ��y�t + �� − y�t��2��2�t��t1,. . .,tn�

= ��y�t + �� − y�t��4 + M̂2
2�y0,�� − 2M̂2�y0,���y�t + �� − y�t��2�

=
1

Ny
�M̂4�y0,�� + M̂2

2�y0,�� − 2M̂2
2�y0,���

=
M̂4�y,�� − M̂2

2�y,��
Ny

, �A5b�

where Ny is the number of data points in bin y.
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For the optimization procedure it is convenient to simplify the expressions for functions mi and �i �i=1,2�. Namely, m1 and
m2 can be written as expressions of �1 and �2. In fact, substituting Eqs. �7a� and �7b� into Eqs. �10c� and �10d� and adding and
subtracting properly y yields

m1�y� = �
−�

+�

D1�x� f̄��x	y�dx = �
−�

+�

�d10 + d11x� f̄��x	y�dx = �
−�

+�

�d10 + d11�x + y − y�� f̄��x	y�dx

= d10�
−�

+�

f̄��x	y�dx + d11�
−�

+�

�x − y� f̄��x	y�dx + d11y�
−�

+�

f̄��x	y�dx

= d10 + d11�y + �1�y�� , �A6a�

m2�y� = 2�
−�

+�

��x − y�D1�x� + D2�x�� f̄��x	y�dx = 2�
−�

+�

��x − y��d10 + d11x� + d20 + d21x + d22x
2� f̄��x	y�dx

= 2�
−�

+�

��x − y��d10 + d11�x − y + y�� + d20 + d21�x − y + y� + d22�x − y + y�2� f̄��x	y�dx

= 2��1�y�d10 + ��2�y� + y�1�y��d11 + d20 + ��1�y� + y�d21 + �2y�1�y� + �2�y� + y2�d22� . �A6b�

Substituting Eqs. �A6a� and �A6b� into Eq. �11� yields F
as a functional depending only on the integrals �1�y� and
�2�y� defined in Eqs. �10a� and �10b�, apart from the six
parameters, � and djk, we want to optimize.

APPENDIX B: THE PROBABILITY DENSITY

FUNCTION f̄�(x �y)

To solve the minimization problem we will need to ex-

plicitly write expressions for f̄��x 	y�. This conditional prob-
ability density function appears in Eqs. �10a� and �10b� and
according to Bayes theorem is given by

f̄��x	y� =
f��y	x�p�x�

�
−�

+�

f��y	x��p�x��dx�

, �B1�

where f��y 	x� is the probability density function of the mea-
surement noise ��t, i.e., a Gaussian function centered at y
with variance �2,

f��y	x� =
1

��2�
e−�y − x�2/2�2

, �B2�

and p�x� can be written, assuming that the process is station-
ary, as

p�x� =
N

D2�x�
e��x�, �B3�

where N is some normalized function such that �−�
� p�x�dx

=1 and

��x� = �
−�

x D1�x��
D2�x��

dx�. �B4�

For an Ornstein-Uhlenbeck process D1�x�=d10+d11x and
D2�x�=d20 one finds

pOU�x� =�−
d11

2d20�
e1/2d11/d20�x + d10/d11�2

, �B5�

from which one easily sees that d11�0 is a necessary con-
dition to have a well-defined probability density function
p�x�.

For the general case given by Eqs. �7� one has typically
D2�x��0 with d22�0, which yields 
�4d20d22−d21

2 �0. In
these situations, p�x� can also be integrated, yielding

pG�x� = N�D2�x��d11/2d22−1e�d10−d21d11/2d22�h0�x�, �B6�

with

h0�x� =
2

�

�arctan�2d22x + d21

�

� +

�

2 � . �B7�

APPENDIX C: THE DERIVATIVES OF �1, �2, m1,
AND m2

The minimization problem needs also the expression of
the derivatives for the �s and ms. To compute them one

needs first to write the derivatives of function f̄��x 	y� defined
in Eq. �B1�.

Defining g�x ,y�� f��y 	x�p�x� one has in general

� f̄��x	y�
�X

=

�g

�X
�

−�

+�

g�x�,y�dx� − g�
−�

+� �g

�X
dx�

��
−�

+�

g�x�,y�dx��2 , �C1�

where X is some variable on which f̄� depends. Since p�x�
depends only on parameters dij and f��y 	x� depends only on
�, we have
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�g�x,y�
��

=
� f��y	x�

��
p�x� , �C2a�

�g�x,y�
�dij

=
�p�x�
�dij

f��y	x� , �C2b�

where for f��y 	x� we have

� f��y	x�
��

= f��y	x�
�x − y�2

�3 �C3�

and for p�x� we have

p�x� =
N

D2�x�
e��x� � Np̂�x� , �C4�

with

N = ��
−�

+�

p̂�x�dx�−1

�C5�

and therefore

�p�x�
�X

= N� � p̂�x�
�X

− p�x��
−�

+� � p̂�x��
�X

dx�� , �C6�

with X one of the d parameters.
In the Ornstein-Uhlenbeck case

� p̂OU�x�
�d10

=
1

d20
�x +

d10

d11
�pOU�x� , �C7a�

� p̂OU�x�
�d11

= � 1

2d20
�x2 −

d10
2

d11
2 � +

1

2d11
�pOU�x� , �C7b�

� p̂OU�x�
�d20

= −
1

2d20
�1 +

d11

d20
�x +

d10

d11
�2�pOU�x� , �C7c�

and in the general case

� p̂G�x�
�d10

= h0�x�pG�x� , �C8a�

� p̂G�x�
�d11

= � 1

2d22
log D2�x� −

d21

2d22
h0�x��pG�x� , �C8b�

� p̂G�x�
�d20

= � 1

D2�x�
+

�h0�x�
�d20

�pG�x� , �C8c�

� p̂G�x�
�d21

= � x

D2�x�
−

d11

2d22
h0�x�

+ �d10 −
d21d11

2d22
� �h0�x�

�d21
�pG�x� , �C8d�

� p̂G�x�
�d22

= �� d11

2d22
− 1� x2

D2�x�
−

d11

2d22
2 log D2�x� +

d21d11

2d22
2 h0�x�

+ �d10 −
d21d11

2d22
� �h0�x�

�d22
�pG�x� , �C8e�

where

�h0�x�
�d20

= −
2d22



h0�x� −

4d22�2d22x + d21�

�
 + �2d22x + d21�2�

, �C9a�

�h0�x�
�d21

=
d21



h0�x� +

2





 + d21�2d22x + d21�

 + �2d22x + d21�2 , �C9b�

�h0�x�
�d22

= −
2d20



h0�x� +

4




x
 − d20�2d22x + d21�

 + �2d22x + d21�2 .

�C9c�

So, neglecting the parameter d10 as explained in Sec. III,
for the other parameters � ,d11,d20,d21,d22 we have

� f̄��x	y�
��

=
1

�3 ��x − y�2 − �2�y�� f̄��x	y� , �C10a�

� f̄��x	y�
�dij

=

e−�x − y�2/2�2�p�x�
�dij

− f̄��x	y��
−�

+�

e−�x� − y�2/2�2�p�x��
�dij

dx�

�
−�

+�

g�x�,y�dx�

�C10b�

and therefore considering Eqs. �10a� and �10b� that define
functions �1�y� and �2�y� and also Eqs. �A6a� and �A6b�
defining functions m1�y� and m2�y� it follows

��1�y�
��

=
1

�3 �h1�y� − �1�y��2�y�� , �C11a�

��2�y�
��

=
1

�3 �h2�y� − �2
2�y�� , �C11b�

�m1�y�
��

= d11
��1�y�

��
, �C11c�

�m2�y�
��

= 2��d21 + y�d11 + 2d22��
��1�y�

��

+ �d11 + d22�
��2�y�

��
� , �C11d�

��1�y�
�dij

= �
−�

+�

�x� − y�
� f̄��x�	y�

�dij
dx�, �C11e�
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��2�y�
�dij

= �
−�

+�

�x� − y�2� f̄��x�	y�
�dij

dx�, �C11f�

�m1�y�
�d11

= y + �1�y� + d11
��1�y�
�d11

, �C11g�

�m1�y�
�d2j

= d11
��1�y�
�d2j

, �C11h�

�m2�y�
�d11

= 2��d21 + y�d11 + 2d22��
��1�y�
�d11

+ �d11 + d22�
��2�y�
�d11

+ �2�y� + y�1�y�� ,

�C11i�

�m2�y�
�d20

= 2��d21 + y�d11 + 2d22��
��1�y�
�d20

+ �d11 + d22�
��2�y�
�d20

+ 1� , �C11j�

�m2�y�
�d21

= 2��d21 + y�d11 + 2d22��
��1�y�
�d21

+ �d11 + d22�
��2�y�
�d21

+ �1�y� + y� , �C11k�

�m2�y�
�d22

= 2��d21 + y�d11 + 2d22��
��1�y�
�d22

+ �d11 + d22�
��2�y�
�d22

+ 2y�1�y� + �2�y� + y2� ,

�C11l�

where

h1�y� = �
−�

+�

�x� − y�3 f̄��x�	y�dx�, �C12a�

h2�y� = �
−�

+�

�x� − y�4 f̄��x�	y�dx�. �C12b�
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